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Control to facet

by piecewise-affine

output feedback

Pieter Collins†, Luc C.G.J.M. Habets∗,

and Jan H. van Schuppen†

Abstract The control-to-facet problem plays an important role in the design of
feedback controllers for piecewise-affine hybrid systems on polytopes. In the litera-
ture, necessary and sufficient conditions for solvability by static state feedback exist.
In this paper, we extend these results to the case of continuous piecewise-affine out-
put feedback. For the construction of a controller, a triangulation of the output
polytope is made, that satisfies additional conditions, to guarantee compatibility
with the induced subdivision of the state polytope. In the state feedback case, the
use of this special type of triangulations was not required.

Key words affine system on polytope, output feedback, control to facet, control of
hybrid systems, triangulation.

1 Introduction and motivation

In the past fifteen years, the study of hybrid systems has become a very active re-
search area. There are several reasons for this rapidly growing interest. Nowadays
many engineering systems are controlled by computers, which creates an interaction
between the continuous dynamics of a physical system, and the discrete dynamics of
a computer. Furthermore, the dynamics of control systems often contain discontinu-
ities, or become hybrid after modelling. Examples of hybrid systems are abundantly
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available, ranging from the modelling of car engines to (air) traffic control and robot
motion planning.

One particular class of hybrid systems, the class of piecewise-affine hybrid
systems, has received a large amount of attention. A piecewise-affine hybrid sys-
tem consists of a discrete automaton with a continuous-time affine system on a
polyhedral set at each discrete mode, and a switching mechanism between discrete
and continuous dynamics. This class of systems was introduced by Sontag in [8]
and [9], and has become popular because they are appropriate for the modelling
of real-world systems, and because their mathematical structure allows for useful
theoretical results.

Several approaches exist for controlling piecewise-affine hybrid systems. A
popular approach, developed by Morari, Bemporad et al. (see e.g. [1, 2]) is based
on the time discretization of the system, and is geared to performance optimization
by computational methods. A completely different methodology is the so-called
control-to-facet approach (see [3, 4, 5, 6]). The idea of this approach is to apply
continuous state feedback at each discrete mode of the hybrid system in order to
influence the switching behavior of the underlying discrete automaton. Assuming
that the switching depends on the facet through which a polytope is left, a central
question in this method is how an affine system on a polytope can be steered to
a particular (set of) facet(s), without leaving the state polytope before reaching
this so-called exit facet. The solution to this control problem becomes a building
block for the control of hybrid systems. In [6] it has been combined with a backward
recursion algorithm on the discrete dynamics in order to achieve some a priori given
control objectives.

In this paper, we focus on one discrete mode of a hybrid system, and consider
the control-to-facet problem on a polytope. In [4] and [6] several problems of this
type have been solved by state feedback. In this paper we generalize these results
to the case of partial observations, and consider the control-to-facet problem with
static output feedback. In both cases, the construction of a control law involves tri-
angulating the state/output polytope, and solving a system of linear inequalities at
each vertex of the triangulation. The main differences between the output feedback
and the state feedback constructions are that for output feedback, the triangulation
of the output polytope has to be carried out before the solvability of the system of
linear inequalities is checked, and that the triangulation of the output polytope has
to satisfy additional conditions, while in the state-feedback case any triangulation
of the state polytope is allowed.

2 Problem description

Let X ⊂ R
n be a full-dimensional polytope. Denote by V(X) the set of vertices of

X , and by F(X) the set of facets of X . If x̂ is a point on the boundary of X , then
we denote by F(x̂, X) the set of all facets of X which contain the point x̂.

Let f : R
n → R

n be a continuous function, and consider the autonomous
system ẋ = f(x) on the polytope X . Let F be a facet of X with outward normal
vector nF . Then the exit set Ex(F ) of F is defined as the set of points of F through
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which a state trajectory x(t) can leave X , i.e.

Ex(F ) = cl
{

x ∈ F | nT
F f(x) > 0

}

.

The facet F is blocked if Ex(F ) = ∅.

Definition 1. Let x(t, x0) be the trajectory of the autonomous system ẋ = f(x) on
polytope X with initial state x0 ∈ X. This trajectory is said to cross facet F of X
at time T ≥ 0 if

(i) ∀t ∈ [0, T ] : x(t, x0) ∈ X;

(ii) ∃ε > 0, ∀t ∈ (T, T + ε) : x(t, x0) 6∈ X;

(iii) x(T, x0) is an element of the exit set of F .

In this paper we study an affine control system Σ on a full-dimensional poly-
tope X in R

n, given by

Σ :

{

ẋ(t) = f(x(t), u(t)) = Ax(t) + Bu(t) + a, x(0) = x0;
y(t) = h(x(t)) = Cx(t) + c.

(1)

Here x(t) ∈ X denotes the state, u(t) ∈ U the input, with U a polytope in R
m, and

y(t) ∈ Y the output, with Y = CX + c a polytope in R
p. In particular, A ∈ R

n×n,
B ∈ R

n×m, C ∈ R
p×n, and c ∈ R

p. Without loss of generality we assume that C is
of full row rank; in particular p ≤ n. The dynamics described in (1) remain valid
as long as the state x remains in the state-polytope X . Let E ⊂ F(X) denote a set
of admissible exit facets. We want to solve the problem of steering the state x(t) to
an admissible exit facet, using static output feedback. In a hybrid systems context
this corresponds to the the disabling of unfavorable discrete transitions from a given
discrete location.

Problem 2. (Control-to-facet) Find a continuous piecewise-affine map g : Y −→ U
such that the static output feedback law u(t) = g(y(t)) guarantees that all state
trajectories of the closed-loop system ẋ = Ax + Bg(Cx + c) + a, with initial state
x(0) = x0 ∈ X, can only leave X by crossing an admissible exit facet F ∈ E.
In other words, all non-admissible exit facets F ∈ F(X)\E are blocked w.r.t. the
closed-loop dynamics.

For our solution of the output feedback Problem 2, we use a similar approach
to that used in [4, 6]. We first construct a triangulation of the output polytope
which satisfies certain compatibility conditions with the state polytope and output
map. We then set up a system of linear inequalities for the input at each vertex
of the triangulation. If these inequalities have a solution, we construct the output
feedback control law by interpolating the input at the vertices of the triangulation.

The problem with partial observations is more difficult than that with com-
plete observations because one observed output y ∈ Y corresponds to a set of states
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Xy = {x ∈ X | Cx + c = y}. Furthermore, the set Xy may intersect several facets
of X , so the corresponding input u = g(y) has to satisfy constraints with respect to
all these facets at the same time.

3 Triangulation of the output polytope

In order to handle all constraints on the input corresponding to a given output, we
first make a triangulation of the output polytope in such a way that the inverse
images of all outputs in one particular simplex of the triangulation intersect the
same facets of the state polytope X .

Definition 3. Let X be a full-dimensional polytope in R
n, and let h : R

n −→ R
p

be a surjective affine function i.e. h(x) = Cx + c where C has full row rank. Let
Y = h(X), so Y is a full-dimensional polytope in R

p. A triangulation T of Y is a
set of full-dimensional simplices S1, . . . , SL in R

p with the following properties

(i)

L
⋃

i=1

Si = Y ,

(ii) For all i, j ∈ {1, . . . , L} with i 6= j the intersection Si ∩Sj is either empty, or
a common face of Si and Sj.

The vertex set of a triangulation consists of the union of all vertices of the simplices
in the triangulation: V(T ) :=

⋃L

i=1 V(Si).
A triangulation T of Y is (X, h)-compatible if additionally

(iii) ∀S ∈ T : V(h−1(S) ∩ X) ⊂ h−1(V(S)),

where h−1(W ) := {x ∈ R
n | h(x) ∈ W} denotes the inverse image of a set W ⊂ R

p

under the affine map h.

In other words, a triangulation T of Y is (X, h)-compatible, if for every simplex
S ∈ T , the vertices of the polytope h−1(S) ∩ X are mapped to vertices of S by the
mapping h. Hence h−1(S) ∩ X is the convex hull of h−1(V(S)) ∩ X .

It is easy to prove that the images of all vertices of the polytope X under
the affine mapping h become elements of the vertex set of an (X, h)-compatible
triangulation:

Lemma 4. Let T be an (X, h)-compatible triangulation of polytope Y = h(X).
Then

h(V(X)) ⊂ V(T ). (2)

In general, inclusion (2) is strict, and the vertex set V(T ) of an (X, h)-
compatible triangulation will contain more points than just the images of the ver-
tices of X under the mapping h.

In order to generate a compatible triangulation, we start with the chamber
complex of (X, h) as defined in [7].
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Definition 5. Let X be a polytope and h a surjective affine map. The chamber
complex Γ of (X, h) is the polyhedral subdivision of Y = h(X) with faces {σ(y) | y ∈
Y } where

σ(y) =
⋂

{h(F ) | F is a face of X and y ∈ h(F )}.

The following result shows that any simplicial refinement of the chamber com-
plex is a compatible triangulation:

Theorem 6. Let T be a triangulation of Y which refines the chamber complex Γ
of (X, h). Then T is (X, h)-compatible.

The proof follows from [7, Proposition 2.4]. Hence we can construct an (X, h)-
compatible triangulation of Y by first computing the chamber complex of (X, h),
and then taking a suitable triangulation of each chamber.

4 Solvability conditions and construction of a
piecewise-affine output feedback

If T is an (X, h)-compatible triangulation of the output polytope Y , and for every
vertex w ∈ V(T ) a corresponding input uw ∈ U is fixed, then an admissible piecewise
affine output feedback is easily constructed. Any y ∈ Y is contained in at least one
Sy ∈ T , and can be written (in a unique way) as a convex combination of the
vertices of Sy:

y =
∑

w∈V(Sy)

λy,ww,

with λy,w ∈ [0, 1], w ∈ V(Sy), and
∑

w∈V(Sy) λy,w = 1. Next we define the output
feedback g : Y −→ U by

g(y) =
∑

w∈V(Sy)

λy,wuw. (3)

Then g is a continuous function, and affine on every simplex of T .
Next, we recall that h(V(X)) ⊂ V(T ) (Lemma 4). In every vertex w ∈ V(T )

we want to find an input uw ∈ U such that in all points in h−1(w) ∩ ∂X the vector
field is pointing in the right direction. In particular, in all vertices of non-admissible
exit facets of X , the closed-loop vector field should point into the polytope X . If
it is possible to realize these conditions at the vertices, then they also remain valid
on the facet, because facets are convex sets, the closed-loop dynamics is piecewise-
affine, and the triangulation T is (X, h)-compatible. These observations lead to the
main result of this paper:

Theorem 7. Consider an affine system (1) on a full-dimensional polytope X
in R

n. Let E ⊂ F(X) be a set of admissible exit facets. Let T be an (X, h)-
compatible triangulation of the output polytope Y , with h(x) = Cx + c the affine
output map. Then Problem 2 is solvable by a continuous piecewise-affine output
feedback g : Y −→ U if and only if
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∀w ∈ V(T ), ∃uw ∈ U, ∀v ∈ V(h−1(w) ∩ X), ∀F ∈ F(v, X)\E :

nT
F (Av + Buw + a) ≤ 0, (4)

where nF denotes the unit normal vector of facet F , pointing out of polytope X.

Proof. Necessity is straightforward, and is shown in a similar way as in [4] and [6].
To prove sufficiency, assume that in all vertices w ∈ V(T ) an input uw is

chosen such that (4) holds. We will prove that the corresponding piecewise-affine
feedback law u = g(y), as described in (3), solves Problem 2, by verifying that

∀F ∈ F(X)\E , ∀x ∈ F : nT
F (Ax + Bg(h(x)) + a) ≤ 0.

Let F̂ ∈ F(X)\E , and let x̂ ∈ F̂ . Define ŷ := h(x̂). There is at least one
simplex S ∈ T such that ŷ ∈ S. Furthermore, ŷ can uniquely be represented as a
convex combination of vertices of S, i.e. there exist w1, . . . , wk ∈ V(S) and unique

λ1, . . . , λk ∈ (0, 1] such that
∑k

i=1 λiwi = ŷ, and
∑k

i=1 λi = 1.
Clearly, x̂ ∈ h−1(S) ∩ X , and since triangulation T is (X, h)-compatible, we

know from Condition (iii) of Definition 3 that

∀v ∈ V(h−1(S) ∩ X) : h(v) ∈ V(S).

Let V(S) = {w1, . . . , wk, wk+1, . . . , wp+1}. Then there exist

v1,1, . . . , v1,ℓ1 ∈ V(h−1(w1) ∩ X),

v2,1, . . . , v2,ℓ2 ∈ V(h−1(w2) ∩ X),

...

vp+1,1, . . . , vp+1,ℓp+1
∈ V(h−1(wp+1) ∩ X),

and scalars ρ1,1, . . . , ρ1,ℓ1 , ρ2,1, . . . , ρ2,ℓ2 , . . . , ρp+1,1, . . . , ρp+1,ℓp+1
∈ [0, 1] such that

1.
∑p+1

i=1

∑ℓi

j=1 ρi,jvi,j = x̂,

2.
∑p+1

i=1

∑ℓi

j=1 ρi,j = 1.

For i = 1, . . . , p + 1 we define µi :=
∑ℓi

j=1 ρi,j . Then µi ∈ [0, 1] and
∑p+1

i=1 µi = 1.
Subsequently we define for i = 1, . . . , p + 1 and j = 1, . . . , ℓi

αi,j =

{

0 if µi = 0,
ρi,j

µi
if µi 6= 0.

Then

x̂ =

p+1
∑

i=1

ℓi
∑

j=1

ρi,jvi,j =

p+1
∑

i=1,µi 6=0

µi

ℓi
∑

j=1

ρi,j

µi

vi,j =

p+1
∑

i=1

µi

ℓi
∑

j=1

αi,jvi,j .
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For i = 1, . . . , p + 1, we define zi =
∑ℓi

j=1 αi,jvi,j . Then µi = 0 implies zi = 0, and
µi 6= 0 implies that zi ∈ Conv({vi,1, . . . , vi,ℓi

}), where Conv denotes the convex hull.
Hence, if µi 6= 0 then zi ∈ Conv(V(h−1(wi) ∩ X)) = h−1(wi) ∩ X , so in particular
h(zi) = wi. Since the output map h is affine, it follows that

ŷ = h(x̂) = h(

p+1
∑

i=1

µizi) =

p+1
∑

i=1,µi 6=0

µih(zi) =

p+1
∑

i=1,µi 6=0

µiwi =

p+1
∑

i=1

µiwi.

On the other hand, ŷ =
∑k

i=1 λiwi was the unique representation of ŷ as convex
combination of w1, . . . , wp+1. It follows that µi = 0 for all i = k + 1, . . . , p + 1, and
µi = λi 6= 0 for i = 1, . . . , k. We conclude that

x̂ =

k
∑

i=1

λizi,

with zi ∈ h−1(wi) ∩ X , (i = 1, . . . , k).
From the assumption that x̂ ∈ F̂ , it also follows that zi ∈ F̂ for all i = 1, . . . , k.

Indeed, since F̂ is a facet of X , there exists α
F̂
∈ R such that

∀x ∈ X\F̂ : nT

F̂
x < α

F̂
,

∀x ∈ F̂ : nT

F̂
x = α

F̂
.

Since x̂ ∈ F̂ , we know that nT

F̂
x̂ = α

F̂
. If there would exist an i ∈ {1, . . . , k} such

that zi 6∈ F̂ , then nT

F̂
zi < α

F̂
, and it would follow that

nT

F̂
x̂ =

k
∑

i=1

λin
T

F̂
zi <

k
∑

i=1

λiαF̂
= α

F̂
,

which contradicts the fact that nT

F̂
x̂ = α

F̂
.

At this point it is proved that for all i = 1, . . . , k, the constructed zi is an
element of the polytope h−1(wi)∩ F̂ . Since V(h−1(wi)∩ F̂ ) ⊂ V(h−1(wi)∩X), and
F̂ ∈ F(v, X)\E for all v ∈ V(h−1(wi) ∩ F̂ ), condition (4) states that

∀i ∈ {1, . . . , k}∀v ∈ V(h−1(wi) ∩ F̂ ) : nT

F̂
(Av + Bui + a) ≤ 0. (5)

Furthermore, each zi is a convex combination of vertices in V(h−1(wi) ∩ F̂ ), hence
(5) implies that

nT

F̂
(Azi + Buwi

+ a) ≤ 0 for all i = 1, . . . , k.

So the vector field of the closed-loop system in x̂ satisfies

nT

F̂
(Ax̂ + Bg(h(x̂)) + a) = nT

F̂

(

A

k
∑

i=1

λizi + B

k
∑

i=1

λiuwi
+ a

)

=

k
∑

i=1

λin
T

F̂
(Azi + Buwi

+ a) ≤ 0.
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This completes the proof.

Remark 8. The proof of Theorem 7 is completely constructive. The result does
not only describe necessary and sufficient conditions for solvability of Problem 2,
but also yields a continuous piecewise-affine output feedback law that realizes this
solution, provided that such a control law exists i.e. provided that there exists a
solution that satisfies all linear inequalities in (4) simultaneously.

Remark 9. In Problem 2 it is only required to find an output feedback such that all
non-admissible exit facets of the closed-loop system are blocked. This implies that
either the state will leave the state polytope in finite time by crossing an admissible
exit facet, or the state will remain inside the polytope forever. In a hybrid systems
context this second case may be interpreted as deadlock in a hybrid mode. To prevent
this from happening, one often wants to guarantee that all trajectories leave the
state polytope in finite time. A sufficient condition for this requirement is that there
exists a direction in R

n such that in all points of the state polytope the closed-loop
dynamics has a strictly positive velocity in that direction. Because of the convexity
of the problem, it suffices to check this condition at those points on the boundary
of the state polytope that are mapped to vertices of the triangulation of the output
polytope. The condition may be stated as a (bi)linear inequality on the inputs at
these vertices similar to (4).

5 An example

Consider the system

ẋ =





1 −2 1
−1 1 0

1 1 −2



 x +





1
3

−4



u +





1
−2

3



 ; y =

(

1 0 0
0 1 0

)

x.

on the state polytope X = [0, 1]3 with input set U = [−2, 2]. Clearly, the output
polytope Y is [0, 1]2. We want to solve Problem 2 with the facets x1 = 1 and x2 = 1
as admissible exit facets.

Let w1 = (0, 0), w2 = (1, 0), w3 = (1, 1), and w4 = (0, 1). Then there are
two triangulations possible, one based on the diagonal from w1 to w3 and the other
based on the diagonal from w2 to w4. Both triangulations are (X, h)-compatible.
Every vertex w of Y corresponds to two vertices of X , with z-coordinate 0 and
1, respectively. The input uw has to be chosen in such a way that in both these
vertices the inequalities of (4) are satisfied. Straightforward computations show
that the input choice uw1

= 2/3, uw2
= uw3

= uw4
= 1 satisfies all constraints. So,

a continuous piecewise-affine output feedback law is given by

u = g(y) =

{

1 if y1 + y2 ≥ 1, y1 ≤ 1, y2 ≤ 1;
y1+y2+2

3 if y1 + y2 < 1, y1 ≥ 0, y2 ≥ 0.
(6)

It is easily verified that in all vertices of X the closed-loop vector field ẋ = Ax +
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Bg(Cx) + a has a strictly positive component in the direction of n = (1, 1, 0)T .
Therefore all trajectories of the closed-loop system will leave X in finite time.

Remark 10. In the example described above the control-to-facet problem using
output feedback is also solvable if only the output z(t) = x1(t) + x2(t) is measured.
In that case, the output feedback law (6) becomes

u = g2(z) =

{

1 if 1 < z ≤ 2;
z+2
3 if 0 ≤ z ≤ 1.

6 Conclusion

In this paper we extended the results on control-to-facet by state feedback derived in
[4] and [6] to the case of static output feedback. We introduced the notion of (X, h)-
compatible triangulations, and outlined a construction of such a triangulation. We
showed that necessary and sufficient conditions for the solution of the control-to-
facet problem can be stated as linear inequalities on the inputs at the vertices of the
triangulation. Provided that these conditions are satisfied, an explicit construction
of a static output feedback was obtained.
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